The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons
نویسندگان
چکیده
The brain's biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping.
منابع مشابه
In Vivo Monitoring of Multi-Unit Neural Activity in the Suprachiasmatic Nucleus Reveals Robust Circadian Rhythms in Period1−/− Mice
The master pacemaker in the suprachiasmatic nucleus (SCN) controls daily rhythms of behavior in mammals. C57BL/6J mice lacking Period1 (Per1⁻/⁻) are an anomaly because their SCN molecular rhythm is weak or absent in vitro even though their locomotor activity rhythm is robust. To resolve the contradiction between the in vitro and in vivo circadian phenotypes of Per1⁻/⁻ mice, we measured the mult...
متن کاملThe Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus
The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well und...
متن کاملLive imaging of altered period1 expression in the suprachiasmatic nuclei of Vipr2−/− mice1
Vasoactive intestinal polypeptide and its receptor, VPAC(2), play important roles in the functioning of the brain's circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC(2) receptors (Vipr2(-/-)) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Her...
متن کاملDivergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators
The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhyth...
متن کاملThe biological clock nucleus: a multiphasic oscillator network regulated by light.
The circadian clock nucleus of the mammalian brain is composed of thousands of oscillator neurons, each driven by the cell-autonomous action of a defined set of circadian clock genes. A critical question is how these individual oscillators are organized into an internal clock that times behavior and physiology. We examined the neural organization of the suprachiasmatic nucleus (SCN) through tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016